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Introduction

Neglected parasitic diseases continue to mmpose a substantial global health burden, yet early-stage antiparasitic discovery rarely integrates environmental safety
considerations. Traditional hit prioritization focuses on biochemical potency, cytotoxicity, and pharmacokinetic properties, overlooking potential ecotoxicological risks
assoclated with new chemical entities. To address this gap, we assembled a unified dataset of antiparasitic compounds active against Babesia, Leishmania, Schistosoma, and
Irypanosoma spp., derived from peer-reviewed studies published between 2019 and 2024. Each compound was curated from the literature by extracting structural
information, activity data (ICso and Ki), phenotypic potency (ICso < 10 uM required), selectivity information, cytotoxicity profiles, and available in-vivo evidence. To
complement biological data, ecotoxicological parameters—BCF, IGC50, LC50DM, and LCS0FM—were predicted using ADMET]Iab 3.0. Integrating these environmental
descriptors with ADMET and drug-likeness properties enabled the development. Building upon this integrated biological and ecotoxicological dataset, the study pursued two
main goals:

Second Goal

Second, we aimed to identify environmentally favourable
chemotypes within the antiparasitic chemical space,
providing safer and more sustainable starting points for future
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drug-discovery efforts.

First Goal
First, we sought to determine whether incorporating
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environmental toxicity endpoints into early screening genuinely
reshapes compound prioritization—potentially altering which
molecules would be selected as hits under conventional criteria.
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2. Machine Learning Classifier Training
and Performance

For all the compounds the following properties Hela

have been predicted using ADMETLAB 3.0 D MRC-5
= BCF: Bioconcentration factor Selectivity

= |GC50: 48 hour Tetrahymena pyriformis IGC50

To  understand  how 4. Scaffold Analysis and Green Scaffold
Selection

environmental constraints
shape the antiparasitic
chemical space, we
performed a  scaffold-
centered evaluation of all
compounds ranked with
the GreenDrugScore.
Bemis—Murcko scaffolds
were first extracted to
capture the core structural
frameworks, followed by a
hierarchical scaffold tree
to resolve substructures
and recurring motifs.

To support early detection of
potentially unsafe compounds, we

built a curated dataset integrating
FDA-approved  drugs  (SAFE),
withdrawn drugs (UNSAFE), phase- ... /.
I failures from ChEMBL, and a % T

small set of molecules with 6) . i
experimental  ecotoxicity  data, o e
yielding 1464 compounds spanning

diverse chemical space.

= LC50DM: 48 hour Daphnia magna LC50
= LC50FM: 96 hour fathead minnow LC50
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Classifier ROCAUC Bal. Accuracy PR AUC MCC

XGBoost (XGB) 0.851 0.773 0.837 0.553

AdaBoost (ADA) 0.744 0.676 0.725 0.357

Gradient Boosting (GB) 0.759 0.688 0.724 0.357

Extra Trees (ET) 0.787 0.709 0.755 0.410

CART 0.739 0.665 0.726 0.318

Random Forest (RF) 0.810 0.735 0.783 0.464

Across all tested algorithms, XGBoost provided the most robust
SAFE/UNSAFE classification, with a ROC AUC of 0.851,
balanced accuracy of 0.773, and MCC of 0.553. Its strong ROC
and precision—recall profiles made XGBoost the optimal model for
subsequent scoring and hit-prioritization steps.

: 3. GreenDrugScore and Ranking
Ecolox Scaffold
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S. Conclusions Across the four parasite-focused predictive accuracy, and biological or GDSy i = WADMET 1 WECO Prioritization Outcome by Pathogen Dataset
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The remaining scaffolds were parasite-specific, highlighting distinct structural | - . | o
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