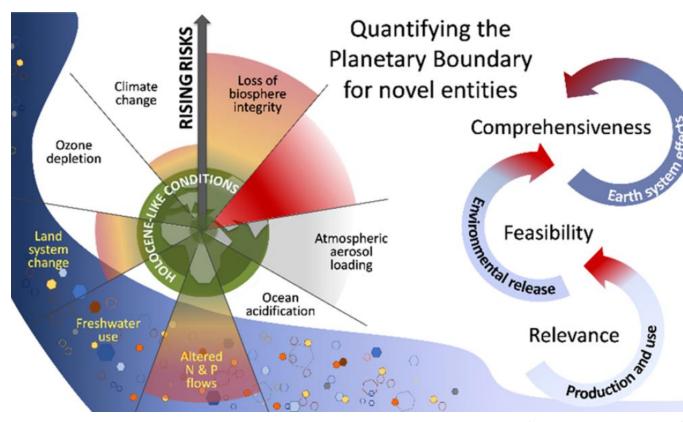

Environmental impact of Pharmaceuticals

One Health drugs against parasitic vector borne diseases in Europe and beyond - OneHealthdrugs

WG4, Workshop 1: Environmental impact of pharmaceuticals and international organizations monitoring 03/04/2023

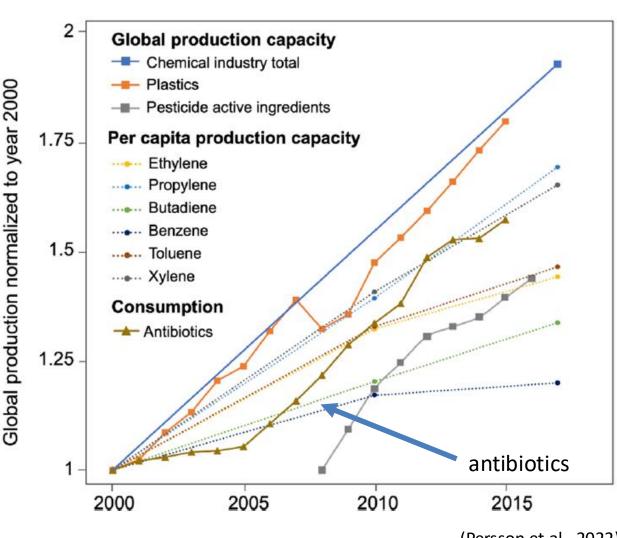
WG4: Integration of R&D Process-Environmental Studies for the Translation in a White Paper

- Drug design in compliance with the overall environmental impact to provide a sharable guideline-like document.
- Assessment of probability of exposure on the basis of substances environmental fate.


Properly inform drug designers and managers on environmental risks compared to societal

benefits.

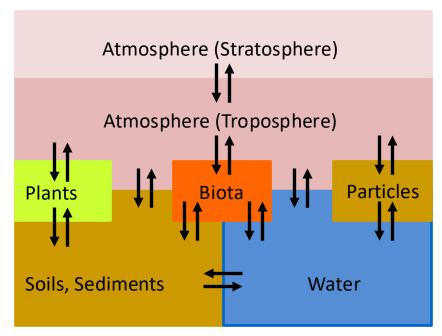
Are we leaving the Safe Area of the Planetary Boundary for Novel Entities?


"...the anthropogenic introduction of novel entities to the environment is of concern at the global level when these entities exhibit persistence, mobility across scales with consequent widespread distribution and accumulation in organisms and the environment, and potential negative impacts on vital Earth System processes or subsystems..."

(Persson et al., 2022)

Relative Growth in the Production of Certain Chemicals

- Polymer "plastic" as the most visible form of chemical pollution: total mass of plastic exceeds that of all living mammals
- 2.4% of it enters the environment every year



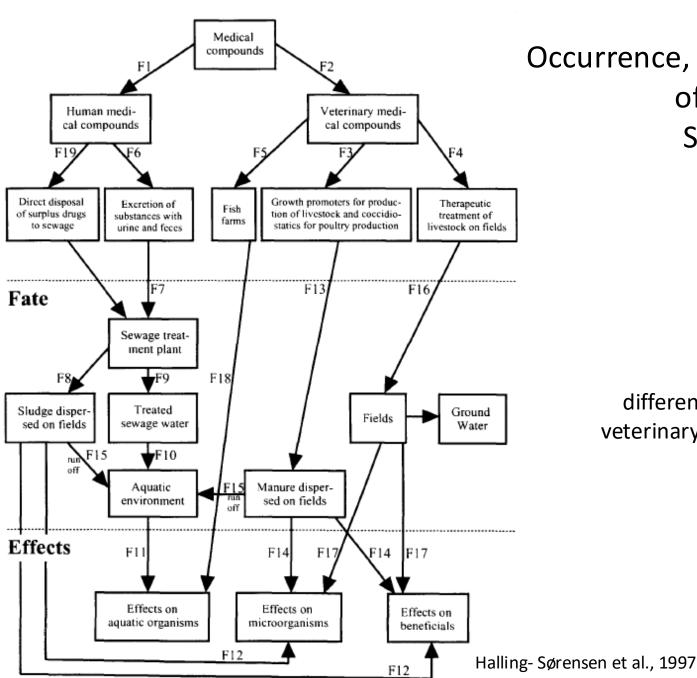
(Persson et al., 2022)

Environmental Impact: What is it all about?

what does the environment do to the substance?

Environmental Chemistry: Partitioning, transformation, exposure

Diclofenac residues as the cause of vulture population decline in Pakistan Oaks et al. (2004)

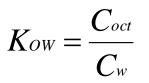

what does the substance do to the environment?

(Eco)toxicology:

Effects on non-target organisms

Ecotoxicology: "Study of the three S's" Toxic Effects of **S**ubstances on Nonhuman **S**pecies in Complex **S**ystems

Changes in state or dynamics of an Substance organism, or at other levels of biological organization, resulting from exposure to a chemical From subcellular/cellular level, tissues, individuals, populations, communities, ecosystems, and landscapes MODE **Ecological interactions** Systen nutrient cycles **ECOLOGY** Van Leeuwen, 1995

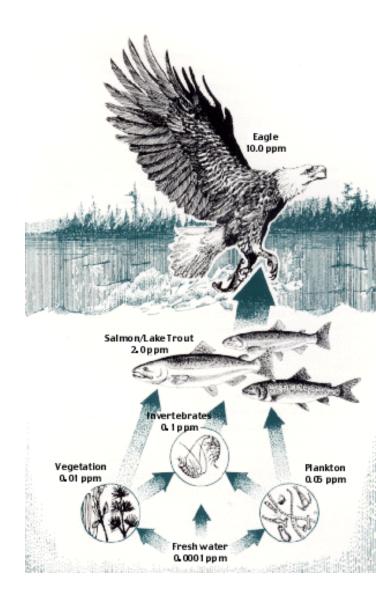

Occurrence, Fate, and Effects of Pharmaceutical Substances in the Environment

different exposure routes of veterinary and human medicinal substances

Partitioning:

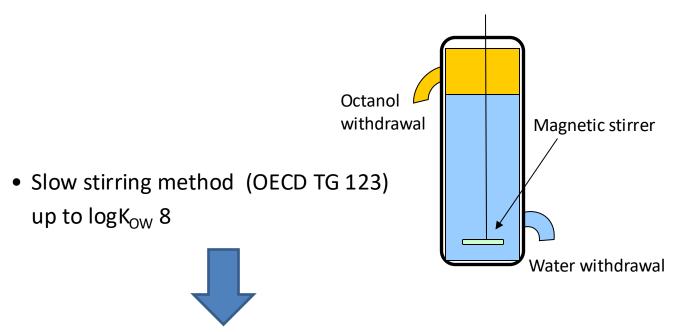
K_{OW}, Indicator for Bioaccumulation

	logK _{ow}	
Benzene	2.13	
Trichlorobenzene	4.05	
Pentachlorophenol	5.01	
PAHs	3.35 – 6.6	
PCBs	~5 - ~7	


Parasiticide Ivermectin:

Range of $log K_{OW}$ 3.2 (– 5.8) in the literature

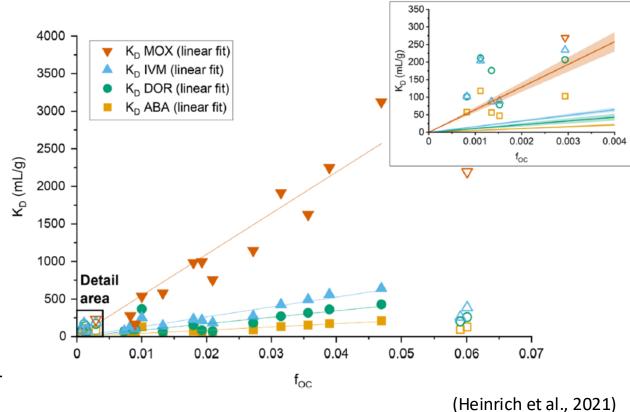
Bioaccumulation?


Gaps in databases need to be filled!

Octanol-Water Partition Coefficient Different Methods and Different Results

 Shaking method (OECD TG 107) with artifacts due to water droplets in octanol phase; up to logK_{OW} 4

Correction of logK_{OW} for ivermectin: from 3.2 to 5.6

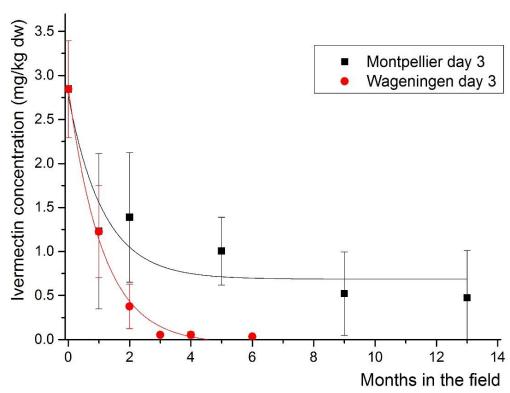

(Römbke et al., 2019)

Sorption in Soils and Sediments Indicator for mobility in the Environment

$$K_{\rm D} = \frac{C_{\rm s}(\rm eq)}{C_{\rm aq}(\rm eq)}$$

$$K_{\rm OC} = \frac{K_{\rm D}}{f_{\rm OC}}$$

K_{OC} is important for the classification of mobile substance as so-called "PMT"-substances



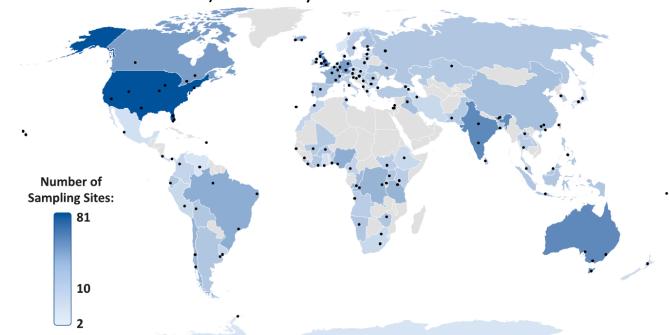
Transformation: Dissappearence, "Loss" of Ivermectin

Possible sub processes

- degradation?
- volatilization?
- leaching to surface and subsurface water?
- •irreversible fixation to soil?
 - •Transformation to non detectable compounds?

"...differences in ivermectin dissipation in cattle dung among sites, with 50% dissipation times of up to 32 d and 90% dissipation times >396 d."

Wohde et al., 2016


Occurrence and Exposure Pharmaceutical residues occur globally in the environment

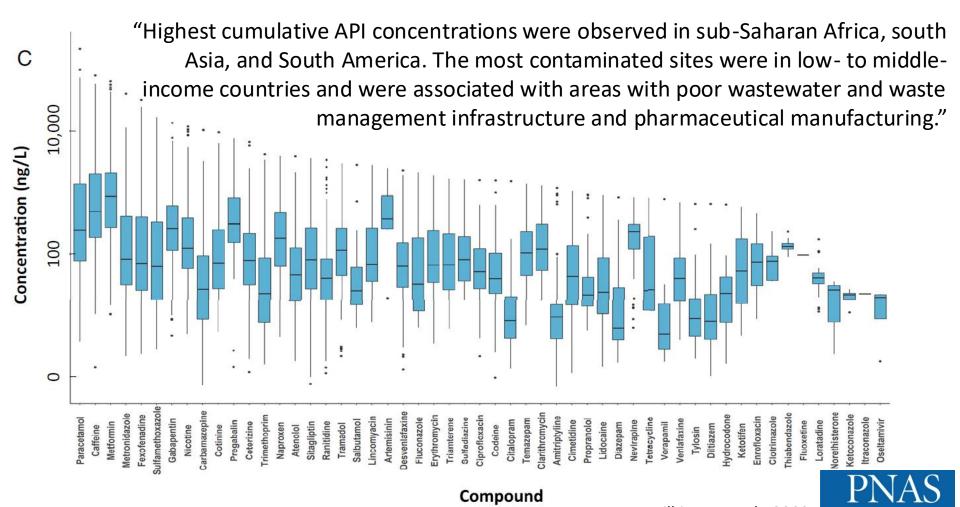
(UBA, 2023)

Pharmaceutical pollution of the world's rivers

"...a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs..."

Databases:

PHARMS-UBA

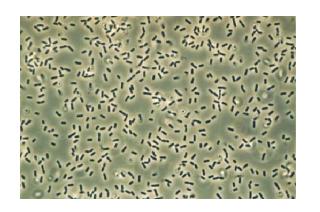

https://www.umweltbundesamt.de/die-uba-datenbank-arzneimittel-in-der

PNAS

Proceedings of the
National Academy of Sciences
of the United States of America

Wilkinson et al., 2022

Pharmaceutical pollution of the world's rivers

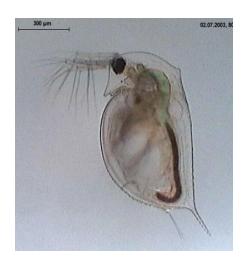


APIs and metabolites/transformation products in environmental compartments

Number of	Global		European Union	
Year	2021	Change to 2015	2021	Change to 2015
detected substances	992	+221	749	+153
in WWTP¹ effluent/sewage/reclaimed water	771	+ 158	591	+117
in surface water/bank filtrate/groundwater/drinking and tap water	703	+ 175	483	+99
in manure/dung/sediment from aquaculture/SPM/biosolids/sludge	337	+192	250	+166
in sediment/soil/SPM	295	+111	227	+95

Source: UBA Pharms Database version 2 (2015) & version 3 (2021)

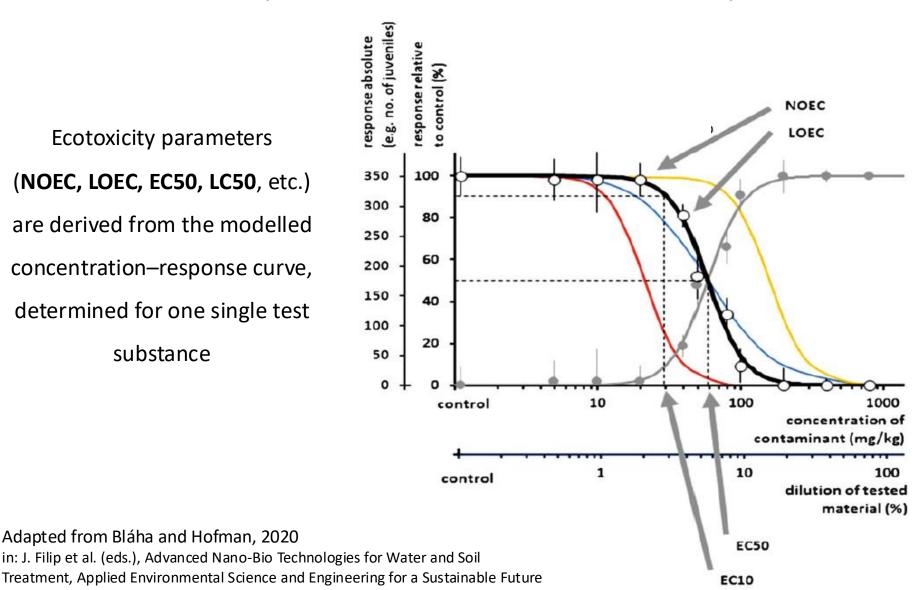
Gildemeister et al., 2022



Studies on deputy organisms, acute toxicity in mostly single-species tests, standardized in OECD Guidelines

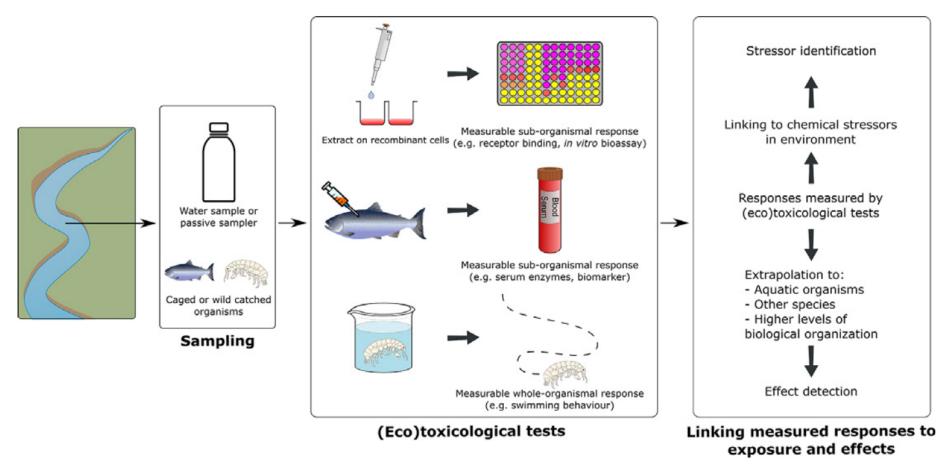
Effects on Non-Target Organisms: Test Methods

- Inhibition of respiration of bacteria (Effect concentration, EC)
- Inhibition of reproduction of algae (Effect concentration, EC)
 - Survival of crustacean (daphnie)
- Survival of fish (lethal dose, lethal concentration, LD/LC)



Non-target organisms		Effect in Lab trial	Active substance	E ffects of
		low toxic effect	Sulfadimethoxin, Sulfamethoxazol, Sulfadimidin, Trimethoprim	pharmaceuticals on
	water fleas	strong toxic effect	Closantel, Cypermethrin, Deltamethrin, Doramectin, Eprinomectin, Fenbendazol, Flubendazol	non-target organisms
*	chironomidae	strong toxic effect	Deltamethrin	
	fish	strong toxic effect	Altrenogest, Closantel, Cypermethrin, Deltamethrin, Eprinomectin, Ivermectin	
	Earth worms	moderate toxic effect	Closantel, Cypermethrin, Deltamethrin, Eprinomectin, Ivermectin	Laboratory
茶	Dung organisms	moderate toxic effect	Closantel	- 500 - 400 - 500
74		strong toxic effect	Cypermethrin, Deltamethrin, Doramectin, Eprinomectin, Ivermectin	100
:0:	soil organisms	decreased phosphatase activity	Doxyzyklin	10 secondara
		change of bacterial community	Lincomycin, Sulfadiazin	Extrapolation
	water plants	low growth inhibition	Trimethoprim	Pation
		strong growth inhibition	Florfenicol	
	crops	moderate germination inhibition	Sulfamethoxazol	
蘇		strong germination inhibition	Florfenicol	Ecosystem
of the		moderate germination inhibition	Enrofloxacin, Sulfadiazin	
		strong germination inhibition	Enrofloxacin, Florfenicol	
		low growth inhibition	Trimethoprim	toxic effect
	cyano bacteria green algae	moderate growth inhibition	Amoxicillin/Penicillin Säure, Tetrazyklin	
		strong growth inhibition	Enrofloxacin, Erythromycin, Oxytetrazyklin	shift of species composition
		no growth inhibition	Amoxicillin/Penicillin Säure	
)0000		moderate growth inhibition	Enrofloxacin, Ivermectin, Tetrazyklin	growth inhibition
		strong growth inhibition	Erythromycin (UBA, mo	dified, 2017) Gießen, 03/04/2023

Prospective Assessment: Ecotoxicity of Chemicals


Ecotoxicity parameters (NOEC, LOEC, EC50, LC50, etc.) are derived from the modelled concentration—response curve, determined for one single test substance

Adapted from Bláha and Hofman, 2020

Retrospective Assessment: Ecotoxicology of Contaminated Samples

Advanced approach: integration of ecotoxicity tests into monitoring practices

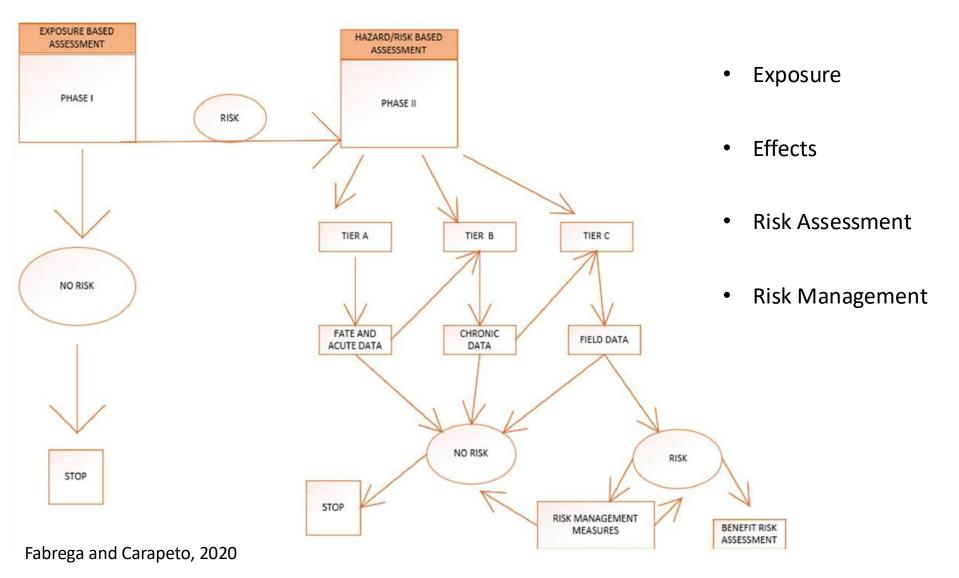
Schuijt et al. (2021)

Environmental Risk Assessment Based on Exposure and Effect

predicted no effect concentration; e.g. on the basis of NOEC including a safety factor

"danger": corresponds to PNEC,

danger: lion


exposure: low in Europe

"probability of exposure": corresponds to **PEC**, predicted environmental concentration; sometimes "MEC" is used instead

Environmental risk as a result of intrinsic hazard of a compound and probability for exposure

The aim is:
$$\frac{PEC}{PNEC} < 1$$

Framework for the Environmental Risk Assessment for Veterinary Medicinal Products in the EU

Environmental Risk Assessment (ERA) International Governance

- ERA principles for veterinary pharmaceuticals are defined in an international framework (VICH)
- Two basic guidelines: VICH GL 6 & VICH GL 38
- Step-wise approach: Phase I and Phase II ERA

VICH GL6 (ECOTOXICITY PHASE I)
June 2000
For implementation at Step 7

ENVIRONMENTAL IMPACT ASSESSMENT (EIAS) FOR VETERINARY MEDICINAL PRODUCTS (VMPs) - PHASE I

Recommended for Implementation at Step 7 of the VICH Process on 15 June 2000 by the VICH Steering Committee

THIS GUIDELINE HAS BEEN DEVELOPED BY THE APPROPRIATE VICH EXPERT WORKING GROUP AND WAS SUBJECT TO CONSULTATION BY THE PARTIES, IN ACCORDANCE WITH THE VICH PROCESS. AT STEP 7 OF THE PROCESS THE FINAL DRAFT IS RECOMMENDED FOR ADOPTION TO THE REGULATORY BODIES OF THE EUROPEAN UNION, JAPAN AND USA.

ENVIRONMENTAL IMPACT ASSESSMENT FOR VETERINARY MEDICINAL PRODUCTS PHASE II GUIDANCE

Recommended for Adoption at Step 7 of the VICH Process in October 2004 by the VICH SC for implementation in October 2005

This Guidance has been developed by the appropriate VICH Expert Working Group and is subject to consultation by the parties, in accordance with the VICH Process. At Step 7 of the Process the final draft will be recommended for adoption to the regulatory bodies of the European Union, Japan and USA.

Phase I ERA

Determination of **environmental exposure of the medicine** and need for ecotoxicological assessment, **mandatory for all veterinary medicines**.

Based on exposure

- Low exposure → Limited risk
- Individual treatments → Phase I
- Pets → Phase I
- Natural substances → Phase I
- Exposure < 100 μ g/kg \rightarrow Phase I

Specific issues:

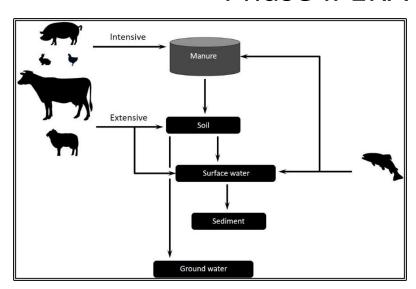
- Parasiticides → Phase II
- Aquaculture open waters → Phase II

Relevant for majority of pharmaceutical veterinary medicinal products (> 95%)

"However clause"

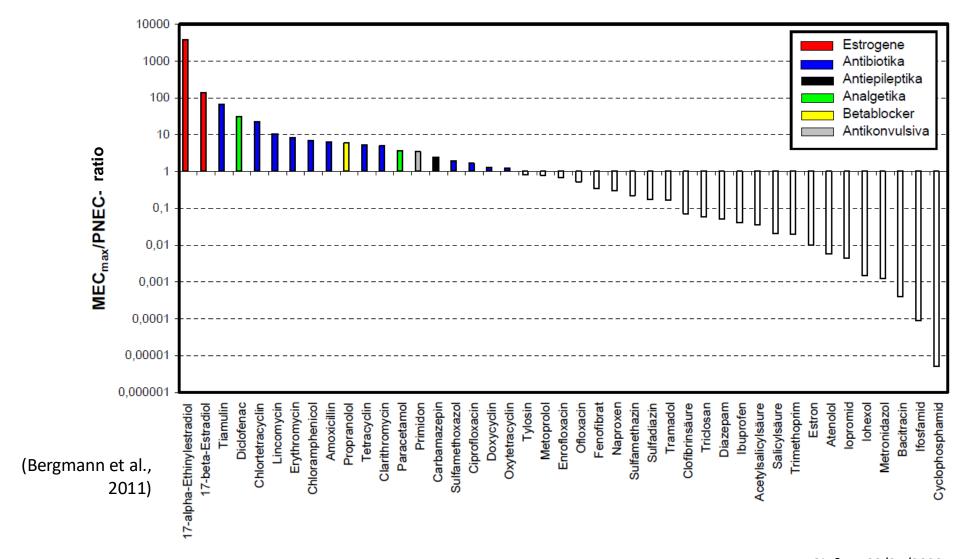
Phase II ERA

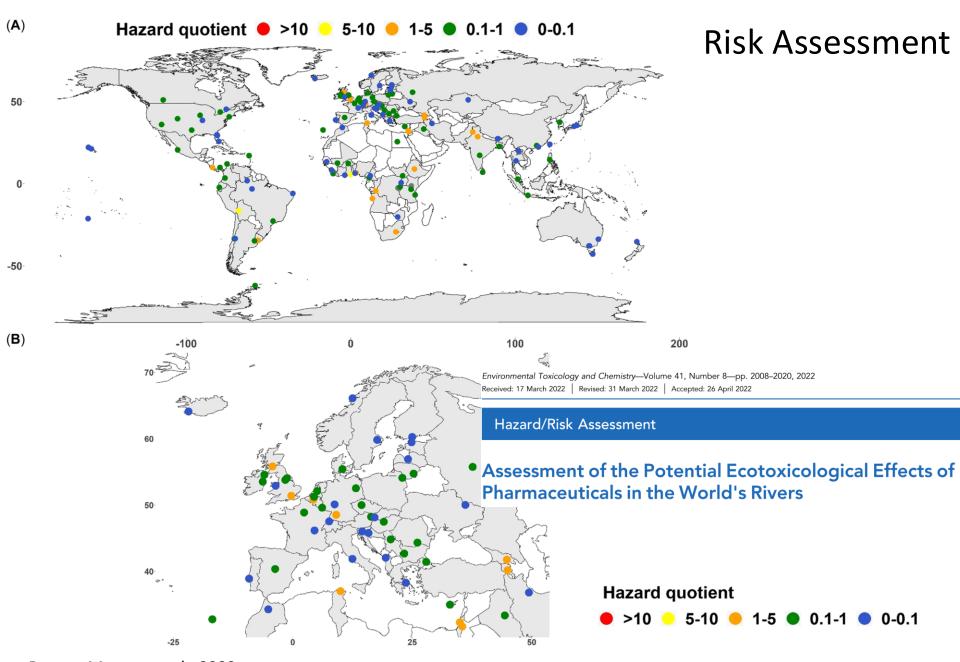
- Problem formulation Protection goals
 - Protection of ecosystems


Exposure calculation (PEC)

Toxicity determination (PNEC)

• Risk Quotient Approach \rightarrow RQ = PEC/PNEC


Husbandry practices
Physicochemical/fate studies


Environmental compartments

- Soil
- Water
- Dung
- Sediment

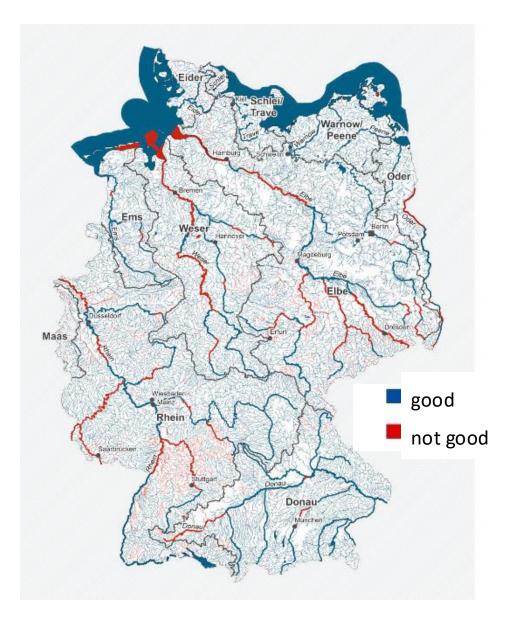
mitigation measures to reduce the risk to an acceptable level?

MEC/PNEC-Ratios for Pharmaceuticals With Good to Sufficient Ecotoxicological Data Base

Little Consideration of APIs in Environmental EU legislation

watchlist:

- diclofenac
- estrone (E1)
- 17-beta-estradiol (E2)
- 17-alpha-ethinylestradiol (EE2)
- three macrolide antibiotics

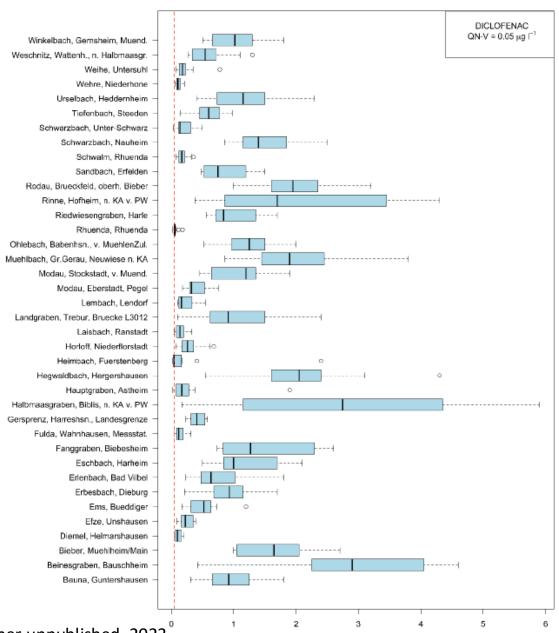

	EU Legislative framework	Year of adoption	Consideration of pesticides ¹⁾	Consideration of pharmaceuticals	Current EU action	
	Water Framework Directive (2000/60/EC)	2000	Annex VI, Part A Annex VIII	No	-	
	Directive on Environmental Quality Standards (Directive 2008/105/EC amended by 2013/39/EU)	2013	Art. 7a, Substances in annex (EQS)	Art 8b Watchlist, Art 8c strategic approach	Review of priority substances ²⁾ , Fulfilling strategic approach pharmaceuticals ³⁹	
	Groundwater Directive (2006/118/EC)	2006	Annex I: Groundwater quality standards	No	-	
	Sewage Sludge Directive	1986	No	No	revision proposed, impact assessment closed	
	Urban Waste Water Directive	1991	No	No	in revision	
	Industry Emissions Directive	2010	Annex I: Chemical industry / production	Annex I: Chemical industry / production	draft of revision published in 2022	
	Classification, labelling & packaging regulation	2008	YES	No	Revision planned	
	Revised Drinking Water Directive	2020	(17) Recital Annex I Water quality	(7), (17) Recital Art. 13 8. Monitoring Art. 19 3. Evaluation	-	
	Soil Health Law	Open	Open	Open	Proposal in 2023	

Gildemeister et al., 2022

¹⁾ regulations on plant protection products and biocides

watch list (established in 2015, updates: 2018, 2020, 2022): pharmaceuticals substances included and now proposed as candidates for priority substances

Water Framework Directive Chemical Status of Surface Waters (ubiquitous pollutants excluded)

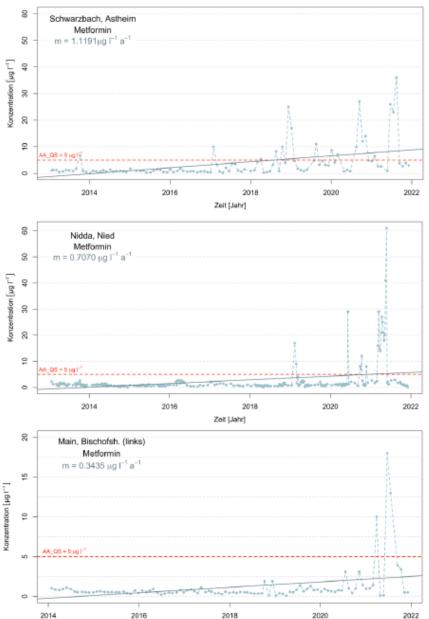


the aim is to bring all rivers, lakes, groundwater and coastal waters into a "good status" by 2027 at the latest.

assessment is based on concentrations in water and biota

Pharmaceuticals in Running Waters in Hesse, Germany

Diclofenac



Always above quality limit (quality standard proposal), with increasing tendency!

This would mean every river with "not good chemical quality"

Pharmaceuticals in Running Waters in Hesse, Germany

Schwarzbach, Asthelm
Metformin

Zeit [Jahr]

Recent strong upward trend (transformation product not considered)!

Solutions for Sustainable Management(?) our Basis for Discussion

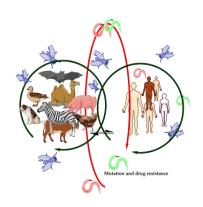
Drug design

- Publicly accessible collection of data
- Strengthening of ERA with the possibility of refusal of approval
- Research promotion of green pharmacy
- Introduction of an environmental classification system for pharmaceuticals
- Extension of good manufacturing practice to include environmental requirements

Application

- Expansion of preventive and precautionary health care
- Information and training of healthcare professionals
- Prescription requirement for drugs that are particularly hazardous to the environment
- Prohibition of advertising for non-prescription drugs

Downstream measures


- Centralized collection of pharmaceutical residues nationwide via the pharmacies
- Expansion of the 4th purification stage primarily at polluted wastewater treatment plants;
 separation hot spots (e.g. hospitals) or X-ray contrast media by separate collection and disposal collection and disposal

Costs

 According to the polluter pays principle, pharmaceutical manufacturers should contribute to the reduction measures

Thank you for listening!

