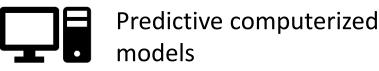


In silico tools for screening of environmental hazard early in the drug development process João Barbosa

Prof. Colin Janssen and Prof. Jana Asselman



EPI Suite[™] – Estimation Program Interface

EPI Suite™ overview

Environmental risk assessment of new chemicals

- Used as a screening level predictive tool
- Screening chemicals for persistence and exposure potential

• Applied for chemicals when the measured values are absent

QSARs available

Physical and chemical properties

KOWWIN™ – logKow
KOCWIN™ – Koc
KOAWIN™ – octanol–air partition coefficient
AOPWIN™ – atmospheric oxidation potential (rate)
HENRYWIN™ – Henry's Law constant
MPBPWIN™ – Melting point, boiling point, and vapor pressure
WSKOWWIN™ – water solubility based on logKow and
structural correlation factor
WATERNT™ – water solubility based on fragment approach

Ecotoxicity

ECOSAR: Ecological Structure Activity Relationship

Acute/chronic data for aquatic organisms

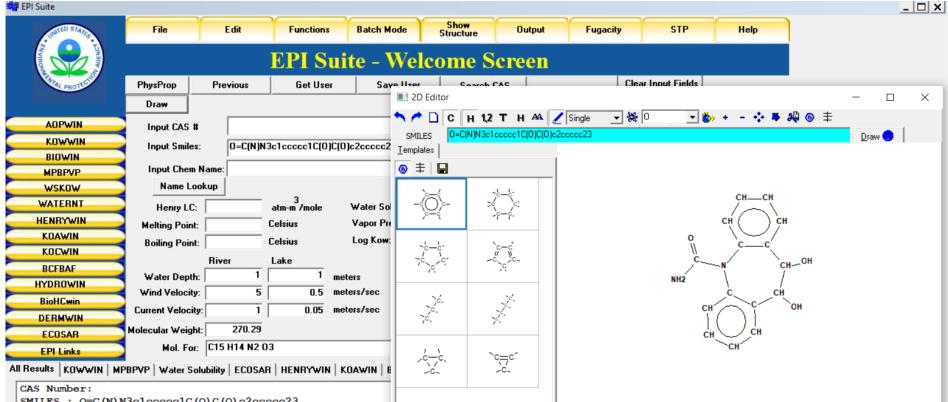
US-EPA

EPI SUITE[™]

Estimation Program Interface

Fate/Transport

AEROWIN™ – atmospheric aerosol formation **BioHCwin** – Biodegradation half-life of HC **BCFBAF**[™] – bioconcentration **HYDROWIN**[™]– hydrolysis rate **BIOWIN™** – aerobic and anaerobic biodegradability **WVOLWIN™** – rate of volatilization from water **STPWIN™** – removal of a chemical in a sewage treatment plant **LEV3EPI™**–partitioning of chemicals between air, soil, sediment, and water


EPI Suite™ input

🖏 EPI Suite						_
UNATED STATES	File Edit	Functions Batch Mode	Show Output	Fugacity STP	Help	
AGENDARY AND		EPI Suite - W	elcome Screen			
PATAL PROTES	PhysProp Previous	Get User Save U	ser Search CAS	Clear Input Fields		
	Draw			alculate Output C Ful		
AOPWIN	Input CAS #			Sur		
	Input Smiles:					
MPBPVP	Input Chem Name:					
WSKOW	Name Lookup					
WATERNT	Henry LC:	— 3 atm-m∕mole Water Solubili	ity: mg/L			
HENRYWIN	Melting Point:	Celsius Vapor Pressu	re: mm Hg			
KOAWIN	Boiling Point:	Celsius Log Kow:				
KOCWIN	River	Lake				
BCFBAF	Water Depth:	1 1 meters				
HYDROWIN	Wind Velocity:	5 0.5 meters/sec				
BioHCwin DEBMWIN	Current Velocity:	1 0.05 meters/sec				
ECOSAR						
EPI Links						
The Estimation Pro	grams Interface (EPI) SuiteTM v	was developed by the US Environmer	ntal Protection Agency's Office of Poll	ution Prevention		

The Estimation Programs Interface [EPI] Suite I M was developed by the US Environmental Protection Agency's Uffice of Pollution Prevention and Toxics and Syracuse Research Corporation (SRC). It is a screening-level tool, intended for use in applications such as to quickly screen chemicals for release potential and "bin" chemicals by priority for future work. Estimated values should not be used when experimental

EPI Suite™ output

SMILES : O=C(N) N3c1ccccc1C(O) C(O) c2ccccc23

EPI Suite™ output

Results All Results | KOWWIN | MPBPVP | Water Solubility | ECOSAR | HENRYWIN | KOAWIN | BIOWIN | BioHCwin | AEROWIN | AOPWIN | KOCWIN | HYDROWIN | BCFBAF | Volatilization | STP 🗨 🕨 CAS Number: SMILES : O=C(N)N3clccccclC(O)C(O)c2ccccc23 CHEM : MOL FOR: C15 H14 N2 O3 MOL WT : 270.29 ----- EPI SUMMARY (v4.11) -----Physical Property Inputs: Log Kow (octanol-water): -----Boiling Point (deg C) : ____ Melting Point (deg C) : Vapor Pressure (mm Hg) : -----Water Solubility (mg/L): _____ Henry LC (atm-m3/mole) : _____ Log Octanol-Water Partition Coef (SRC): Log Kow (KOWWIN v1.68 estimate) = -0.21Boiling Pt, Melting Pt, Vapor Pressure Estimations (MPBPVP v1.43): Boiling Pt (deg C): 481.18 (Adapted Stein & Brown method) Melting Pt (deg C): 203.81 (Mean or Weighted MP) VP(mm Hg,25 deg C): 3.04E-012 (Modified Grain method) VP (Pa, 25 deg C) : 4.05E-010 (Modified Grain method)

Х

EPI Suite™ - ECOSAR

Physical and chemical properties

KOWWIN[™] – logKow
AOPWIN[™] – atmospheric oxidation potential (rate)
HENRYWIN[™] – Henry's Law constant
MPBPWIN[™] – Melting point, boiling point, and vapor pressure
WSKOWWIN[™] – water solubility based on logKow and
structural correlation factor
WATERNT[™] – water solubility based on fragment approach

Ecotoxicity

ECOSAR: Ecological Structure Activity Relationship

Acute/chronic data for aquatic organisms

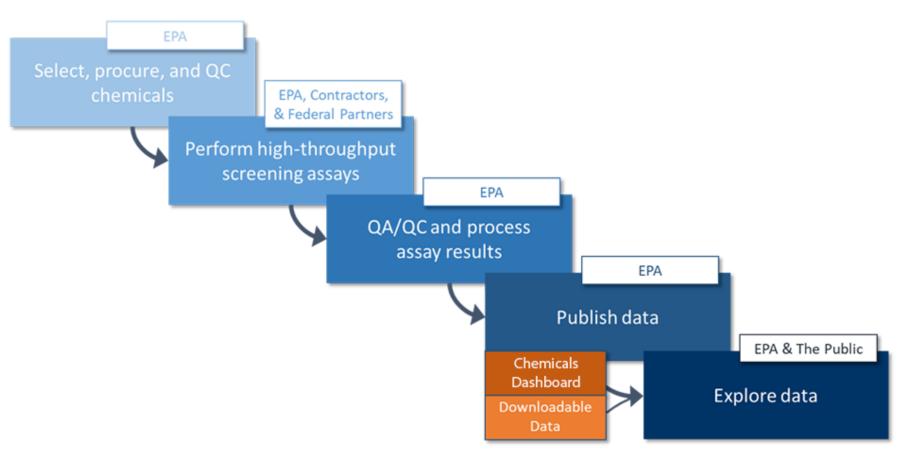
US-EPA

EPI SUITE[™]

Estimation Programs Interface

Fate/Transport

KOAWIN – octanol–air partition coefficient **AEROWIN™** – atmospheric aerosol formation **KOCWIN**[™] − Koc (soil/sediment) **BioHCwin** – Biodegradation halflife of HC **BCFBAF™ HYDROWIN™**– hydrolysis rate **BIOWIN™** – Aerobic and anaerobic biodegradability WVOLWIN[™] – rate of volatilization from water **STPWIN™** – removal of a chemical in a sewage treatment plant **LEV3EPI™**–partitioning of chemicals between air, soil, sediment, and water


ECOSAR version 2.0

Ecosar	Application 2.0				×						
ECOSAR	Special Cases				0						
۵		Ecosar Applica	tion 2.0								×
Organic Module		ECOSAR Specia	Cases								(
Organic		Organic									
Welcome		Module									
		Organic									
		Organic Module								1	
		-								(and	
		Chemical Input							4		
					2						
		Please enter	CAS Number of	SMILE	5				Draw	Submit	•
		CAS Number	SI	AILES							
		50-00-0, 0000	50-00-0,	D=C						Bat	ich
	ECOSAR Version 2.0										
	TED STALL										
	ECOSAR is developed and owned by the U.S. Environmental Pollution Prevention and is protected by copyright throughout download and use the software on their personal and busines	t U=C(N)NSCICCCCI	C(0)C(0)c2cccc23								
	merge, adapt, or prepare derivative works of the software. EC	d			Organic Modul	le Result	Experimental Data	Physical Properties	Kow Estimate	Report	
	hazards of chemicals when measured data are lacking and is Toxic Substances Control Act (TSCA).		Qi		Substituted U	Ireas					
	A TERN		p-()_0								
			но		Organism Fish	Duration 96h	End Point	Concentrati 4.91E+3	Max Log Kow	Flags	
		Log Kow	L		Daphnid	48h	LC50	4.63E+3	5.0		
		-0.2068		B	Green Algae Fish	96h	EC50 ChV	2.57 87.2	5.4 3.0		
		Water Solubility (mg	/L)		Daphnid	2	ChV	99.8	3.0		
	Disclaimer: Experimental data sources and values estimated by EPI are not endorsed by the EPA; nor d			2	Green Algae Fish (SW)	96h	ChV LC50	0.888 263	5.0 5.0	٨	
	Furthermore, professional judgement is needed to determine the applicability and accuracy of Physic	Melting Point (*C)		Secondard .	Mysid (SW)	96h	LC50	867	5.0	4	
					Hish (SW) Mysid (SW)		ChV ChV	7.96 682	3.0 3.0	A	
	Accept Decline	- Second and the second									
	© 2000-2016 U.S. Environmental Protection	Chemical Details									
	© 2000-2010 0.5. Environmental Protection	SMILES			Benzyl Alcoho	ols 🕕					
		O=C(N)N3c1ccc	cc1C(O)C(O)c2ccccc23		Organism	Duration	End Point	Concentrati	Max Log Kow	Flags	
		MOL WT			Fish	96h	LC50	7.21E+3	5.0	A A	
		270.29			Daphnid	48h	LC50	4.81E+3	5.0	<u>A</u>	
		Log Kow			Green Algae	96h	EC50 ChV	899 398	5.4 3.0	A.	
		-0.2068	(estimated)		Fish Daphnid		ChV	458	3.0	血血 血()	
-	\sim	-0.2000			Green Algae	81	ChV	252	3.0	4	
i			(measured)						Alexandra and a second s		
		Water Solubility	(mg/L)								
6	iHENT	103.93	(estimated)								
			(measured)								
l	INIVERSITY				× [-

ToxCast database

ToxCast high-throughput database

Potential applications include

GHFNT

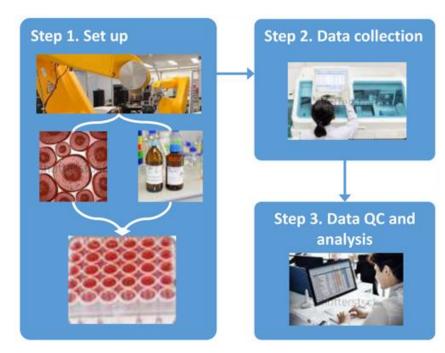
UNIVERSITY

- Indication of toxicity range using similar chemicals
- Identification of most suitable assays
- Prioritization of chemicals for further testing

ToxCast chemical selection criteria

Relevance

- Exposure potential
- Regulatory interest



Practical constrains

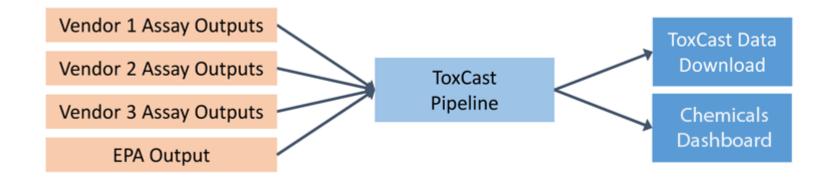
- Commercial availability
- DMSO solubility
- Volatility
- Chemical stability

Generating ToxCast data

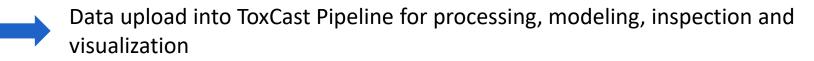
Step 1.

High-throughput technology set-up assays into plates with numerous wells (e.g. 384 well-plate)

Step 2.

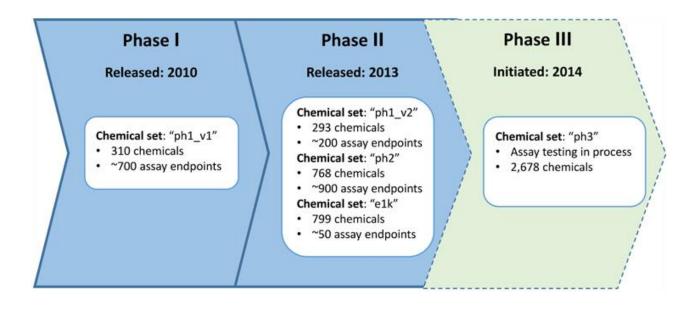

Incubation, assay performance and data compilation

Step 3.


Quality control, normalization, analysis and formatting

Data processing and analysis

Data compilation from different sources in unique formats



Final data made available for download and in the Chemicals Dashboard

Publicly available data

• ToxCast has been developed in three distinct phases

Currently data available for ~ 1800 chemicals and 700 assay endpoints

Accessing ToxCast data

https://comptox.epa.gov/dashboard/

https://epa.figshare.com/articles/dataset/ ToxCast_Database_invitroDB_/6062623

Accessing ToxCast data

Accession via

Chemical information

- systematic name
- synonym
- CASRN
- DTXSID DSSTox substance identifier
- InChIKey International Chemical Identifier

Assay/Gene information

- endpoint name
- target gene name or symbol

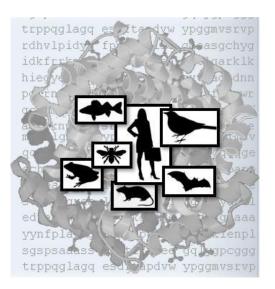
Data available on

tested assays – including assay details

target protein ID – connection to SeqAPASS

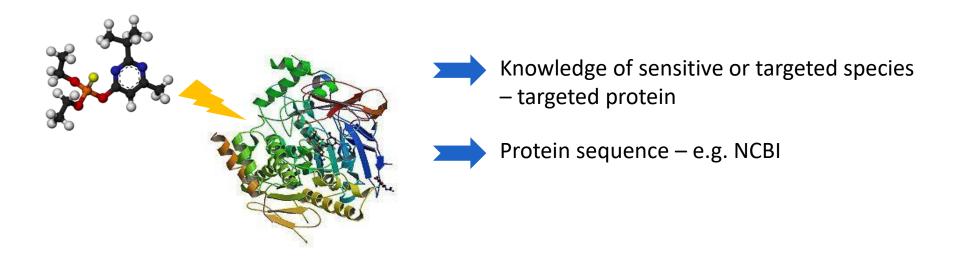
target gene ID

connection to AOP-Wiki


toxicity data expressed as AC50 (μ M) - 50% of maximum activity

SeqAPASS – Sequence Alignment to Predict Across Species Susceptibility

What is SeqAPASS?



Sequence Alignment to Predict Across Species Susceptibility - SeqAPASS

Required information

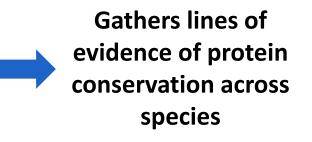
Sequence of chemical molecular target in target species

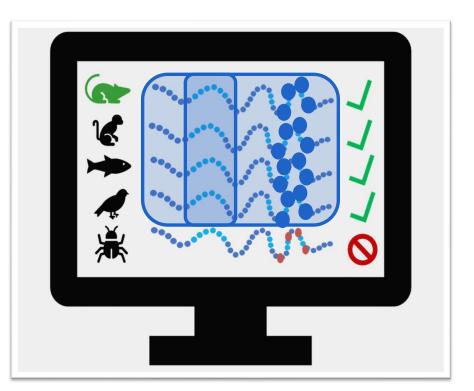
Compared to **millions of proteins** from **thousands of species**

Greater similarity = greater likelihood of chemical interaction

Multi-level analysis

Level 1


Primary Amino Acid Sequence Alignments


Level 2

Conserved Functional Domain Alignments – e.g. DNA binding domain

Level 3

Critical Amino Acid Conservation

SeqAPASS output

Percent similarity is quantified

Susceptibility cut-off is estimated

Qualitative output (YES/NO) based on protein conservation across different levels for various species

Common Name	Ortholog Candidate	Cut-off	Percent Similarity
Human	Y	33.15	100
Florida manatee	Y	33.15	98.8
Mallard	Y	33.15	82.29
Rock pigeon	Υ	33.15	80.93
Green anole	γ	33.15	80.65
Pacific transparent sea squirt	Y	33.15	33.15 Lowest % Similarity that is still an ortholog
Yesso scallop	N	33.15	32.87
Purple sea urchin	Ν	33.15	26.05
Human whipworm	Ν	33.15	23.53
Bed bug	Ν	33.15	21.62

Other interesting tools

- OECD QSAR Toolbox <u>https://www.oecd.org/chemicalsafety/risk-assessment/oecd-qsar-toolbox.htm</u>
- VEGA QSAR <u>https://www.vegahub.eu/portfolio-item/vega-qsar/</u>

Both include human health hazard assessment

• ECOdrug - <u>https://ecodrug.org/</u>

João Barbosa PhD student

Blue Growth Research Lab

Email: JoaoAndre.AlvesBarbosa@UGent.be

www.bluegrowthlab.ugent.be www.ugent.be

f	Ghent University
y	@MarineAtUgent
in	Ghent University

